Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The alcohol-sensitive period during early octavolateral organ development in zebrafish (Danio rerio).

Fetal alcohol exposure can cause Fetal Alcohol Spectrum Disorders (FASD), completely preventable developmental disabilities characterized by permanent birth defects. However, specific gestational timing when developing organs are most sensitive to alcohol exposure is unclear. In this study, we examined the temporal effects of embryonic alcohol exposure on octavolateral organs in zebrafish (Danio rerio), including inner ears and lateral line neuromasts that function in hearing, balance, and hydrodynamic detection, respectively. To determine an alcohol-sensitive period in the first 24 hours post fertilization (hpf), Et(krt4:EGFP)sqet4 zebrafish that express green fluorescent protein in sensory hair cells were treated in 2% alcohol for 2, 3, and 5-hours. Octavolateral organs of control and alcohol-exposed larvae were examined at 3, 5, and 7 days post fertilization (dpf). Using confocal and light microscopy, we found that alcohol-exposed larvae had significantly smaller otic vesicles and saccular otoliths than control larvae at 3 dpf. Only alcohol-exposed larvae from 12-17 hpf had smaller otic vesicles at 5 dpf, smaller saccular otoliths at 7 dpf and fewer saccular hair cells, neuromasts and hair cells per neuromast at 3 dpf. In addition, auditory function was assessed by microphonic potential recordings from inner ear hair cells in response to 200-Hz stimulation. Hearing sensitivity was reduced for alcohol-exposed larvae from 7-12 and 12-17 hpf. Our results show that 12-17 hpf is an alcohol-sensitive time window when morphology and function of zebrafish octavolateral organs are most vulnerable to alcohol exposure. This study implies that embryonic alcohol exposure timing during early development can influence severity of hearing deficits. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app