Add like
Add dislike
Add to saved papers

Preferential recognition of auto-antibodies against 4-hydroxynonenal modified DNA in the cancer patients.

BACKGROUND: The structural perturbations in DNA molecule may be caused by a break in a strand, a missing base from the backbone, or a chemically changed base. These alterations in DNA that occurs naturally can result from metabolic or hydrolytic processes. DNA damage plays a major role in the mutagenesis, carcinogenesis, aging and various other patho-physiological conditions. DNA damage can be induced through hydrolysis, exposure to reactive oxygen species (ROS) and other reactive carbonyl metabolites including 4-hydroxynonenal (HNE). 4-HNE is an important lipid peroxidation product which has been implicated in the mutagenesis and carcinogenesis processes.

METHODS: The present study examines to probe the presence of auto-antibodies against 4-hydroxynonenal damaged DNA (HNE-DNA) in various cancer subjects. In this study, the purified calf thymus DNA was damaged by the action of 4-HNE. The DNA was incubated with 4-HNE for 24 h at 37°C temperature. The binding characteristics of cancer auto-antibodies were assessed by direct binding and competitive inhibition ELISA.

RESULTS: DNA modifications produced hyperchromicity in UV spectrum and decreased fluorescence intensity. Cancer sera exhibited enhanced binding with the 4-HNE modified calf thymus DNA as compared to its native conformer. The 4-HNE modified DNA presents unique epitopes which may be one of the factors for the auto-antibody induction in cancer patients.

CONCLUSION: The HNE modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app