Add like
Add dislike
Add to saved papers

Discovery of a Novel Sn(II)-Based Oxide β-SnMoO 4 for Daylight-Driven Photocatalysis.

Daylight-driven photocatalysts have attracted much attention in the context of "green" technology. Although various active materials have been reported and their applications are rapidly increasing, many are discovered after enormous experimental efforts. Herein the discovery of a novel oxide photocatalyst, β-SnMoO4 , is demonstrated via a rational search of 3483 known and hypothetical compounds with various compositions and structures over the whole range of SnO- M O q /2 ( M : Ti, Zr, and Hf ( q = 4); V, Nb, and Ta ( q = 5); Cr, Mo, and W ( q = 6)) pseudobinary systems. Screening using thermodynamic stability, band gap, and band-edge positions by density functional theory calculations identifies β-SnMoO4 as a potential target. Then a low temperature route is used to successfully synthesize the novel crystal, which is confirmed by X-ray powder diffraction and Mössbauer spectroscopy. β-SnMoO4 is active for the photocatalytic decomposition of a methylene blue solution under daylight and its activity is comparable to a known photocatalyst, β-SnWO4 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app