Add like
Add dislike
Add to saved papers

Attenuation by incretins of thyroid hormone-stimulated osteocalcin synthesis in osteoblasts.

Biomedical Reports 2016 December
Incretins, the polypeptide hormone glucose- dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) secreted from the small intestine after nutrient ingestion, are generally known to stimulate insulin secretion from pancreatic β-cells. We previously demonstrated that triiodothyronine (T3) stimulates osteocalcin synthesis at least in part through p38 mitogen-activated protein kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of GIP and GLP-1 on T3-stimulated osteocalcin synthesis and the mechanism of action involved in MC3T3-E1 cells. GIP and GLP-1 markedly suppressed the T3-stimulated osteocalcin release. GIP and GLP-1 significantly attenuated the expression levels of osteocalcin mRNA induced by T3. The T3-stimulated transactivation activity of the thyroid hormone-responsive element was reduced by GIP and GLP-1. These results suggest that incretins repressed the T3-stimulated osteocalcin synthesis in osteoblast-like MC3T3-E1 cells, and the suppressive effect of incretins was mediated through transcriptional levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app