JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Scaling carbon nanotube complementary transistors to 5-nm gate lengths.

Science 2017 January 21
High-performance top-gated carbon nanotube field-effect transistors (CNT FETs) with a gate length of 5 nanometers can be fabricated that perform better than silicon complementary metal-oxide semiconductor (CMOS) FETs at the same scale. A scaling trend study revealed that the scaled CNT-based devices, which use graphene contacts, can operate much faster and at much lower supply voltage (0.4 versus 0.7 volts) and with much smaller subthreshold slope (typically 73 millivolts per decade). The 5-nanometer CNT FETs approached the quantum limit of FETs by using only one electron per switching operation. In addition, the contact length of the CNT CMOS devices was also scaled down to 25 nanometers, and a CMOS inverter with a total pitch size of 240 nanometers was also demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app