Add like
Add dislike
Add to saved papers

Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China.

Chemosphere 2017 April
Fulvic acid (FA) plays a significant role in biogenic-elemental cycling in aquatic ecosystems which is highly dependent on their organic composition. In this study, the aquatic FA contents and binding properties during bloom and non-bloom periods in Taihu Lake were investigated by two-dimensional correlation spectroscopy Fourier transform infrared spectroscopy (2D-COS-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. Compared with non-bloom FA, bloom FA was of lower nitrogen content and higher C/N ratio. It contained more carboxylic and aliphatic groups while less amide groups. 2D-COS-FTIR spectra evidenced the carboxyl groups in bloom FA had the fastest response to Cu(II) binding. Also, polysaccharide in bloom FA was more susceptive to Cu(II) concentrations than that in non-bloom FA. While comparing with bloom FA, the N-rich organic compounds in non-bloom FA exhibited faster binding sequence with Cu(II). A comprehensive scheme about the interaction process of FA-Cu(II) showed that both nitrogenous and oxygenic groups in FAs were active in binding to Cu(II). The alteration in binding behaviors of organic groups in FAs to Cu(II) may have been driven by algal products and microbial community variety in Taihu Lake. Our results here have the potential to contribute significantly to future studies of dissolved organic matter dynamic biogeochemistry processes and trace metal cycling processes in eutrophic lakes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app