Add like
Add dislike
Add to saved papers

Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition.

Nitrate-driven sulfide oxidation has been proved a cost-effective way to control sediments odor which has long been a universal problem for urban rivers in south China areas. In this work, sediments treatment experiments under a dynamic variation of temperature from 5 °C to 35 °C with 3% of calcium nitrate added were conducted to reveal the influence of temperature variation on this process. The results showed that microbial community was remarkably restructured by temperature variation. Pseudomonas (15.56-29.31%), Sulfurimonas (26.81%) and Thiobacillus (37.99%) were dominant genus at temperature of ≤15 °C, 25 °C and 35 °C, respectively. It seemed that species enrichment occurring at different temperature gradient resulted in the distinct variation of microbial community structure and diversity. Moreover, nitrate-driven sulfide and ferrous oxidation were proportionally promoted only when temperature increased above 15 °C. The dominant bacteria at high temperature stage were those genus that closely related to autotrophic nitrate-driven sulfide and ferrous oxidizing bacteria (e.g.Thiobacillus, Sulfurimonas and Thermomonas), revealing that promotion of sulfide/ferrous oxidation could be attributed to the change of dominant bacteria determined by temperature variation. Thus, a higher treatment efficiency by calcium nitrate addition for odor control would be achieved in summer than any other seasons in south China areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app