Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Induced Pluripotency and Gene Editing in Fanconi Anemia.

Induced pluripotent stem cells (iPSCs) represent an invaluable tool in a chromosomal instability syndrome such as Fanconi anemia (FA), as they can allow to study of the molecular defects underlying this disease. Many other applications, such as its use as a platform to test different methods or compounds, could also be of interest. But the greatest impact of iPSCs may be in bone marrow failure diseases, as iPSCs could represent an unlimited source of autologous cells to apply in advanced treatments such as gene therapy. At the same time, genome editing constitutes the next generation of technology to further develop a safer, personalized, targeted gene therapy. Despite the promising advantages that these two technologies would present in a disease such as FA, the specific characteristics of the disease make both of these processes especially challenging. Efficient and safer FA-hiPSC (human induced pluripotent stem cell) generation methods, robust and reliable differentiation protocols for iPSCs, as well as really efficient delivery methods to perform targeted gene correction should be developed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app