Add like
Add dislike
Add to saved papers

Relaxation in a Prototype Ionic Liquid: Influence of Water on the Dynamics.

The influence of water on the relaxation of a prototype ionic liquid (IL) C8 mimBF4 is examined in the IL-rich regime combining quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The QENS and MD simulations results for relaxation of IL and the equimolar mixture with water probed by the dynamics of the C8 mim hydrogen atoms in the time range of 2 ps to 1 ns are in excellent agreement. The QENS data show that translational relaxation increases by a factor of 7 on the addition of water, while rotational relaxation involving multiple processes fitted by a KWW function with low β values is speeded up by a factor of 3 on the time scale of QENS measurements. The MD simulations show that the cation diffusion coefficient, inverse viscosity, and ionic conductivity increase on the addition of water, consistent with the very small change in ionicity. The difficulties in obtaining rotational and translational diffusion coefficients from fits to QENS experiments of pure ILs and IL-water mixtures are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app