Add like
Add dislike
Add to saved papers

Investigation of valley-resolved transmission through gate defined graphene carrier guiders.

Massless charge carriers in gate potentials modulate graphene quantum well transport in the same way that a electromagnetic wave propagates in optical fibers. A recent experiment by Kim et al (2016 Nat. Phys. 12 1022) reports valley symmetry preserved transport in a graphene carrier guider. Based on a tight-binding model, the valley-resolved transport coefficients are calculated with the method of scattering matrix theory. For a straight potential well, valley-resolved conductance is quantized with a value of 2n  +  1 and multiplied by 2e 2 /h with integer n. In the absence of disorder, intervalley scattering, only occurring at both ends of the potential well, is weak. The propagating modes inside the potential well are analyzed with the help of band structure and wave function distribution. The conductance is better preserved for a longer carrier guider. The quantized conductance is barely affected by the boundaries of different types or slightly changing the orientation of the carrier guider. For a curved model, the state with momentum closes to the neutral point is more fragile to boundary scattering and the quantized conductance is ruined as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app