Add like
Add dislike
Add to saved papers

Yorkie Regulates Neurodegeneration Through Canonical Pathway and Innate Immune Response.

Molecular Neurobiology 2018 Februrary
Expansion of CAG repeats in certain genes has long been known to be associated with neurodegenerastion, but the quest to identity the underlying mechanisms is still on. Here, we analyzed the role of Yorkie, the coactivator of the Hippo pathway, and provide evidence to state that it is a robust genetic modifier of polyglutamine (PolyQ)-mediated neurodegeneration. Yorkie reduces the pathogenicity of inclusion bodies in the cell by activating cyclin E and bantam, rather than by preventing apoptosis through DIAP1. PolyQ aggregates inhibit Yorkie functioning at the protein, rather than the transcript level, and this is probably accomplished by the interaction between PolyQ and Yorkie. We show that PolyQ aggregates upregulate expression of antimicrobial peptides (AMPs) and Yorkie negatively regulates immune deficiency (IMD) and Toll pathways through relish and cactus, respectively, thus reducing AMPs and mitigating PolyQ affects. These studies strongly suggest a novel mechanism of suppression of PolyQ-mediated neurotoxicity by Yorkie through multiple channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app