Add like
Add dislike
Add to saved papers

Chemically reversible binding of H 2 S to a zinc porphyrin complex: towards implementation of a reversible sensor via a "coordinative-based approach".

Binding of hydrogen sulfide (H2 S) to a zinc porphyrin complex and the stabilization of the related zinc hydrosulfido adduct are explored. High-resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry (HR MALDI-FT-ICR) and1 H NMR experiments provide evidence that HS- coordination occurs at the zinc centre. The coordination of HS- occurs in a reversible manner and modulates fluorescence emission of a tetra(N-methylpyridyl)porphine zinc complex (TMPyPZn). The results highlight the potential of TMPyPZn and related systems for the implementation of fast and simple H2 S sensors via a coordinative-based approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app