Add like
Add dislike
Add to saved papers

Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow.

Nanotechnology 2017 Februrary 25
The synthesis of ultrathin, single-crystalline zinc oxide nanowires was achieved by treating in a flowing microwave plasma oxidation process, zinc films coated beforehand by a sputtered thin buffer layer of copper. The aspect ratio of the nanowires can be controlled by the following experimental parameters: treatment duration, furnace temperature, oxygen concentration. An average diameter of 6 nm correlated with a mean length of 750 nm can be reached with a fairly high surface number density for very short treatments, typically less than 1 min. The oxidized samples are characterized by means of SEM, XRD, SIMS, HRTEM and EDX techniques. Structural characterization reveals that these nanowires are single-crystalline, with the wurtzite phase of ZnO. Nanowires are only composed of ZnO without copper particles inside or at the end of the nanowires. Temperature-dependent photoluminescence measurements confirm that ZnO nanowires are of high crystalline quality and thin enough to produce quantum confinement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app