Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina).

Harbour seals are known to be opportunistic feeders, whose diet consists mainly of pelagic and benthic fish, such as flatfish. As flatfish are often cryptic and do not produce noise, we hypothesized that harbour seals are able to detect and localize flatfish using their hydrodynamic sensory system (vibrissae), as fish emit water currents through their gill openings (breathing currents). To test this hypothesis, we created an experimental platform where an artificial breathing current was emitted through one of eight different openings. Three seals were trained to search for the active opening and station there for 5 s. Half of the trials were conducted with the seal blindfolded with an eye mask. In blindfolded and non-blindfolded trials, all seals performed significantly better than chance. The seals crossed the artificial breathing current (being emitted into the water column at an angle of 45 deg to the ground) from different directions. There was no difference in performance when the seals approached from in front, from behind or from the side. All seals responded to the artificial breathing currents by directly moving their snout towards the opening from which the hydrodynamic stimulus was emitted. Thus, they were also able to extract directional information from the hydrodynamic stimulus. Hydrodynamic background noise and the swimming speed of the seals were also considered in this study as these are aggravating factors that seals in the wild have to face during foraging. By creating near-natural conditions, we show that harbour seals have the ability to detect a so-far overlooked type of stimulus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app