JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.

The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits αq (Gαq ; released by ANG II) and βγ (Gβγ; released by Gi -coupled receptors) to active phospholipase C (PLC). Here we investigated the molecular basis for the enhanced coincident signaling between Gβγ and Gαq in SHR preglomerular vascular smooth muscle cells (PGVSMCs). Because receptor for activated C kinase 1 (RACK1; a scaffolding protein) organizes interactions between Gβγ, Gαq , and PLC, we included RACK1 in this investigation. Cell fractionation studies demonstrated increased levels of membrane (but not cytosolic) Gβ, Gαq , PLCβ3 , and RACK1 in SHR PGVSMCs compared with Wistar-Kyoto rat PGVSMCs. In SHR PGVSMCs, coimmunoprecipitation demonstrated RACK1 binding to Gβ and PLCβ3 , but only at cell membranes. Pertussis toxin (which blocks Gβγ) and U73122 (which blocks PLC) reduced membrane RACK1; however, RACK1 knockdown (shRNA) did not affect membrane levels of Gβ, Gαq , or PLCβ3 In a novel gel contraction assay, RACK1 knockdown in SHR PGVSMCs attenuated contractions to ANG II and abrogated the ability of neuropeptide Y (which signals via Gβγ) to enhance ANG II-induced contractions. We conclude that in SHR PGVSMCs the enlarged pool of Gβγ and PLCβ3 recruits RACK1 to membranes and RACK1 then organizes signaling. Consequently, knockdown of RACK1 prevents coincident signaling between ANG II and the Gi pathway. This is the first study to implicate RACK1 in vascular smooth muscle cell contraction and suggests that RACK1 inhibitors could be effective cardiovascular drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app