Add like
Add dislike
Add to saved papers

Technical Note: Fast respiratory motion estimation using sorted singles without unlist processing: A feasibility study.

PURPOSE: The study aims to demonstrate the feasibility of fast respiratory motion estimation using singles data available as a sorted format in list-mode files acquired in an integrated positron emission tomography/magnetic resonance imaging (PET/MRI) system for a proof-of-concept.

METHODS: The derivation of singles-driven respiratory motion (SDRM) is enabled by singles recorded and binned by second for each detector crystal in PET list-mode data acquired in a SIGNA PET/MR. The proposed method is to derive a SDRM trace by summing up all singles from all detectors through the PET data acquisition. To assess the feasibility of SDRM for data-driven gating (DDG), SDRM traces were derived from the list-mode data acquired in five liver-focused 68 Ga-DOTA-TOC PET/MRI scans, and compared with the traces derived from bellows (pressure belt). Pearson's correlation coefficients and trigger time differences at peak-inhalation phases between SDRM and bellows traces were measured for quantitative evaluation.

RESULTS: The method presented the average processing time of 4.2 ± 0.42 s (range: 3.9 ~ 4.7 s) for the derivation of SDRM traces. The majority of the time was spent for reading singles data from a list-mode file (3.1 ± 0.40 s, range: 2.7 ~ 3.7s). On average, the correlation coefficient of SDRM and bellows traces was 0.69 ± 0.16 (range: 0.41 ~ 0.80) and the time offset of SDRM-driven triggers from bellows-driven triggers was 0.25 ± 0.39 s (range: -0.85 ~ 2.69 s later than bellows triggers), demonstrating the similar patterns and phases of SDRM and bellows traces.

CONCLUSIONS: We introduced PET singles-driven respiratory motion (SDRM) estimation as a proof-of-principle, using sorted singles ready for immediate processing in list-mode data. The results demonstrated the feasibility of SDRM and its potential use for gated PET with fast processing time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app