Add like
Add dislike
Add to saved papers

Absence of Neurofibromin Induces an Oncogenic Metabolic Switch via Mitochondrial ERK-Mediated Phosphorylation of the Chaperone TRAP1.

Cell Reports 2017 January 18
Mutations in neurofibromin, a Ras GTPase-activating protein, lead to the tumor predisposition syndrome neurofibromatosis type 1. Here, we report that cells lacking neurofibromin exhibit enhanced glycolysis and decreased respiration in a Ras/ERK-dependent way. In the mitochondrial matrix of neurofibromin-deficient cells, a fraction of active ERK1/2 associates with succinate dehydrogenase (SDH) and TRAP1, a chaperone that promotes the accumulation of the oncometabolite succinate by inhibiting SDH. ERK1/2 enhances both formation of this multimeric complex and SDH inhibition. ERK1/2 kinase activity is favored by the interaction with TRAP1, and TRAP1 is, in turn, phosphorylated in an ERK1/2-dependent way. TRAP1 silencing or mutagenesis at the serine residues targeted by ERK1/2 abrogates tumorigenicity, a phenotype that is reverted by addition of a cell-permeable succinate analog. Our findings reveal that Ras/ERK signaling controls the metabolic changes orchestrated by TRAP1 that have a key role in tumor growth and are a promising target for anti-neoplastic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app