Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quasi-monochromatic imaging in x-ray CT via spectral deconvolution using photon-counting detectors.

Photon-counting detectors can obtain the spectral information from an incident x-ray spectrum, although the detected counts may differ from the incident counts due to the detector response. If uncorrected or uncompensated, the response will lead to distortion in CT reconstruction. With the intention of reducing the distortion and exploring the potential of photon-counting detectors, a novel reconstruction strategy with spectral deconvolution, which attempts to set itself apart from traditional material decomposition frameworks, is proposed in this paper. It applies deconvolution to the energy window counts using a calibrated detector response and then uses the post-deconvolution photon counts to reconstruct images in multi-energy windows. The output has a quantitative meaning as a quasi-monochromatic attenuation coefficient, because a relatively narrow energy window width is selected. The deconvolution settings and results are carefully discussed in the numerical simulation. An experimental study is then carried out to verify the effectiveness and robustness. The results show that the reconstructed attenuation coefficients after deconvolution fit the standard reference data very well in most of the energy windows, which implies the feasibility of this quasi-monochromatic imaging method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app