JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Surface Forces and Rheology of Titanium Dioxide in the Presence of Dicarboxylic Acids: From Molecular Interactions to Yield Stress.

The surface forces and yield stress of titanium dioxide were measured in the presence of dicarboxylic acids in order to understand the molecular basis for the observed rheological response. The yield stress was measured using the static vane technique, and the surface forces were characterized using an atomic force microscope. The trans and cis isomers of butenedioic acid (fumaric and maleic acids, respectively) were chosen as the relative orientation of the carboxylic groups differs substantially. This enables us to test the hypothesis that an increase in adhesion leads to an increase in yield stress as a consequence of the dicarboxylic acids participating in highly directed bridging. Unlike fumaric acid, maleic acid caused a yield stress reduction in the titanium dioxide suspensions. Surface force measurements between approaching surfaces found that at low pH, fumaric and maleic acids did not induce any additional attraction between the titanium dioxide surfaces. However, significant differences in adhesion were observed, which can be explained in terms of the configuration of the acids at the surface. The observations are consistent with highly directed bridging in the presence of fumaric acid but not in the presence of maleic acid due to the molecular architecture of the dicarboxylic acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app