JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites.

Molecular Co2+ ions were grafted onto doped graphene in a coordination environment, resulting in the formation of molecularly well-defined, highly active electrocatalytic sites at a heterogeneous interface for the oxygen evolution reaction (OER). The S dopants of graphene are suggested to be one of the binding sites and to be responsible for improving the intrinsic activity of the Co sites. The turnover frequency of such Co sites is greater than that of many Co-based nanostructures and IrO2 catalysts. Through a series of carefully designed experiments, the pathway for the evolution of the Co cation-based molecular catalyst for the OER was further demonstrated on such a single Co-ion site for the first time. The Co2+ ions were successively oxidized to Co3+ and Co4+ states prior to the OER. The sequential oxidation was coupled with the transfer of different numbers of protons/hydroxides and generated an active Co4+ ═O fragment. A side-on hydroperoxo ligand of the Co4+ site is proposed as a key intermediate for the formation of dioxygen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app