Add like
Add dislike
Add to saved papers

Hexagonal Boron Nitride (h-BN) Sheets Decorated with OLi, ONa, and Li 2 F Molecules for Enhanced Energy Storage.

First-principles electronic structure calculations were carried out on hexagonal boron nitride (h-BN) sheets functionalized with small molecules, such as OLi, ONa, and Li2 F, to study their hydrogen (H2 ) storage properties. We found that OLi and ONa strongly adsorb on h-BN sheets with reasonably large inter-adsorbent separations, which is desirable for H2 storage. Ab initio molecular dynamics (MD) simulations further confirmed the structural stability of OLi-BN and ONa-BN systems at 400 K. On the other hand, Li2 F molecules form clusters over the surface of h-BN at higher temperatures. We performed a Bader charge investigation to explore the nature of binding between the functionalized molecules and h-BN sheets. The density of states (DOS) revealed that functionalized h-BN sheets become metallic with two-sided coverage of each type of molecules. Hydrogenation of OLi-BN and ONa-BN revealed that the functionalized systems adsorb multiple H2 molecules around the Li and Na atoms, with H2 adsorption energies ranging from 0.20 to 0.28 eV, which is desirable for an efficient H2 storage material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app