Add like
Add dislike
Add to saved papers

The glass transition and interfacial dynamics of single strand fibers of polymers.

Soft Matter 2017 Februrary 9
We investigate the glass transition and interfacial dynamics of single strand fibers of flexible polymers by employing molecular dynamics (MD) simulations along with a coarse grained model. While the polymer fiber has drawn significant attention due to its applicability in tissue engineering and stretchable electronics, its dynamic properties, especially the glass transition temperature (Tg ), are yet to be understood at the molecular level. For example, there has been a controversy on the effect of the polymer fiber radius (R) on Tg : Tg decreased with a decrease in R for some polymer fibers, whereas Tg of other polymer fibers was not sensitive to R. In this article, we estimate the bond relaxation time of polymers and evaluate both Tg and fragility (m) as a function of R. We illustrate that Tg of the polymer fiber decreased with a decrease in R monotonically and also that the values of Tg follow faithfully the empirical equation proposed by Keddie et al. as a function of R, which was successfully employed to fit the values of Tg of both polyvinyl alcohol (PVA) fibers and polyethylene (PE) fibers. We also find that the dynamics of polymers at the interface between a polymer fiber and air is faster than that of polymers at the center. By employing Adam-Gibbs theory, we show that the fast interface dynamics of polymer fibers should influence the cooperative motion of monomers, which should be responsible for the decrease in Tg for smaller values of R. Near the interface there are more mobile monomers that participate in the cooperative motions of polymers. Interesting is that due to the curved surface (unlike flat polymer films) the cooperative motion of monomers is anisotropic in polymer fibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app