Add like
Add dislike
Add to saved papers

Dynamic Self-Stiffening and Structural Evolutions of Polyacrylonitrile/Carbon Nanotube Nanocomposites.

The self-stiffening under external dynamic strain has been observed for some artificial materials, especially for nanocomposites. However, few systematic studies have been carried out on their structural evolutions, and the effect of the types of nanofillers was unclear. In this study, we used a semicrystalline polymer, polyacrylonitrile (PAN), and various types of carbon nanomaterials including C60 , carbon nanotube (CNT), and graphene oxide (GO). An external uniaxial dynamic strain at small amplitude of 0.2% was applied on the prepared nanocomposite films. It was observed that PAN/CNT exhibited significant self-stiffening behavior, whereas PAN/GO showed no response. Systematic characterizations were performed to determine the structural evolutions of PAN/CNT film during dynamic strain testing, and it was found that the external dynamic strain not only induced the crystallization of PAN chains but also aligned CNT along the strain direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app