Add like
Add dislike
Add to saved papers

Effect of A-769662, a direct AMPK activator, on Tlr-4 expression and activity in mice heart tissue.

OBJECTIVES: TLR-4 activates a number of inflammatory signaling pathways. Also, AMPK could be involved in anti-inflammatory signaling. The aim of this study was to identify whether stimulation of AMPK could inhibit LPS-induced Tlr-4 gene expression in mice hearts.

MATERIALS AND METHODS: Heart AMPK activity and/or Tlr-4 expression was stimulated in different mice groups, using respectively IP injection of A-769662 (10 mg/kg) and LPS (2 mg/kg) or a combination of both agents. Moreover, compound-C (20 mg/kg), as an AMPK antagonist, was intraperitoneally co-administrated with both A-769662 and LPS in another group to investigate the role of AMPK activity on Tlr-4 regulation. After 8 hr, in addition to peripheral neutrophil cell count, myocardial p-AMPK, p-ACC as well as MyD88 protein contents and Tlr-4 expression was assessed by Western blotting and real-time qRT-PCR, respectively. TNF-α and IL-6 expression levels were also determined by ELISA.

RESULTS: LPS induced heart Tlr-4 expression (P<0.001) associating with an increase in the myocardial MyD88 protein content (P<0.001), elevation of heart TNF-α (P<0.01) and IL-6 (P<0.05) concentrations, and rise in the peripheral neutrophil cell count (P<0.001). Administration of A-769662 decreased LPS-induced Tlr-4 expression (P<0.01) and alleviated peripheral neutrophil cell count (P<0.01). The inhibitory effect of A-769662 on LPS-induced Tlr-4 expression was reversed by antagonizing AMPK with compound-C (P<0.001) which reduced p-AMPK (P<0.05) and p-ACC (P<0.01) myocardial protein contents in the LPS+A-769662 group.

CONCLUSION: This study demonstrated that activation of AMPK, by A-769662 agent, could inhibit Tlr-4 expression and activity, suggesting a link between AMPK and Tlr-4 in heart tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app