Add like
Add dislike
Add to saved papers

Toll-Like Receptor 4 Signaling in High Mobility Group Box-1 Protein 1 Mediated the Suppression of Regulatory T-Cells.

BACKGROUND Treg cells play a central role in the suppression of immune response, and their suppressive capacity can be modulated by toll-like receptor (TLR) ligands. However, the detailed pathway of TLR ligand modulation is still unknown. The present study aimed to evaluate the effect of the high mobility group box-1 protein 1 (HMGB1) and lipopolysaccharide (LPS) on Treg cells through TLR4 signaling. MATERIAL AND METHODS Treg cells were purified from healthy human peripheral blood mononuclear cells (PBMCs) by magnetic-bead activity cell sorting (MACS), blocked by anti-TLR4 monoclonal antibody, and then incubated with different concentration of LPS or HMGB1. The level of gene expression of IL-1β, IL-10, IFN-γ, and TGF-β were detected using quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), and the proliferation of Treg cells after treating by LPS and HMGB1 was analyzed by flow cytometry. The NF-κB expression in Treg cells was examined by Western blotting. RESULTS LPS treated CD4 CD25 Treg cells directly increased the expression of IL-1b and IL-10 and decreased the expression of IFN-γ and TGF-β. However, HMGB1 treatment resulted in a marked decreased expression of IL-1β, IL-10, IFN-γ, and TGF-β. The proliferation of CD4+ T cells was significantly inhibited by Treg cells in the LPS treatment group, but weaken in the HMGB1 treatment group. These data suggest that HMGB1 and LPS stimulation could downregulate the expression NF-κB p65 in cytoplasmic proteins and increase the expression in nuclear proteins, thus leading to modulation of IL-1β, IL-10, IFN-γ, and TGF-β expression; moreover, the suppressive function of Treg cells could be regulated by TLR4. CONCLUSIONS TLR4 signaling in HMGB1 mediated the suppressive function of Treg cells through the activation of the NF-κB pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app