JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated Tregs.

Science Signaling 2017 January 18
Major barriers to cancer therapy include the lack of selective inhibitors of regulatory T cells (Tregs ) and the lack of broadly applicable ways to directly target tumors through frequently expressed surface oncogenes. Tumor necrosis factor receptor 2 (TNFR2) is an attractive target protein because of its restricted abundance to highly immunosuppressive Tregs and oncogenic presence on human tumors. We characterized the effect of TNFR2 inhibition using antagonistic antibodies. In culture-based assays, we found that two TNFR2 antagonists inhibited Treg proliferation, reduced soluble TNFR2 secretion from normal cells, and enabled T effector cell expansion. The antagonistic activity occurred in the presence of added TNF, a natural TNFR2 agonist. These TNFR2 antibodies killed Tregs isolated from ovarian cancer ascites more potently than it killed Tregs from healthy donor samples, suggesting that these antibodies may have specificity for the tumor microenvironment. The TNFR2 antagonists also killed OVCAR3 ovarian cancer cells, which have abundant surface TNFR2. The antibodies stabilized antiparallel dimers in cell surface TNFR2 that rendered the receptor unable to activate the nuclear factor κB pathway and trigger cell proliferation. Our data suggest that, by targeting tumor cells and immunosuppressive tumor-associated Tregs , antagonistic TNFR2 antibodies may be an effective treatment for cancers positive for TNFR2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app