JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantitative relationships between lacZ mutant frequency and DNA adduct frequency in Muta™Mouse tissues and cultured cells exposed to 3-nitrobenzanthrone.

Mutagenesis 2017 March 2
The frequency of stable DNA adducts in a target tissue can be used to assess biologically effective dose; however, the utility of the metric in a risk assessment context depends on the likelihood that the DNA damage will be manifested as mutation. Previously, we employed the Muta™Mouse system to examine the induction of lacZ mutants and DNA adducts following exposure to the well-studied mutagenic carcinogen 3-nitrobenzanthrone (3-NBA). In this follow-up work, we examined the empirical relationships between total adduct frequency and mutant frequency (MF) in tissues and cultured cells following acute 3-NBA exposure. The results show a significant induction of DNA damage and lacZ mutants in liver, colon and bone marrow, as well as FE1 pulmonary epithelial cells. In contrast, lung and small intestine samples had low, but significantly elevated adduct levels, with no significant increases in lacZ MF. Additional analyses showed a significant relationship between the mutagenic efficiency of total adducts, measured as the slope of the relationships between MF and total adduct frequency, and tissue-specific mitotic index (MI). The lack of mutation response in lung, in contrast to the high in vitro MF in FE-1 lung cells, is likely related to the 100-fold difference in MI. The lack of small intestine mutagenic response may be related to limited metabolic capacity, differences in DNA repair, and /or chemically induced apoptosis that has been observed for other potent mutagens. The results indicate that interpretation of adduct frequency values in a risk assessment context can be improved by considering the MI of the target tissue; however, more generalised interpretation is hampered by tissue-specific variations in metabolic capacity and damage processing. The work provides a proof of principle regarding the use of the Muta™Mouse system to critically examine the health risks associated with tissue-specific adduct loads.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app