Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling.

Bone 2017 April
Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37-/- mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37+/+ control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37-/- bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/β-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app