Add like
Add dislike
Add to saved papers

Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing.

BMC Genomics 2017 January 18
BACKGROUND: Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins.

RESULTS: The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno's hypothesis of dosage compensation was refuted by our post-implantation stage data.

CONCLUSIONS: We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app