Add like
Add dislike
Add to saved papers

Implementation of transmission functions for an optimized three-terminal quantum dot heat engine.

We consider two modifications of a recently proposed three-terminal quantum dot heat engine. First, we investigate the necessity of the thermalization assumption, namely that electrons are always thermalized by inelastic processes when traveling across the cavity where the heat is supplied. Second, we analyze various arrangements of tunneling-coupled quantum dots in order to implement a transmission function that is superior to the Lorentzian transmission function of a single quantum dot. We show that the maximum power of the heat engine can be improved by about a factor of two, even for a small number of dots, by choosing an optimal structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app