Add like
Add dislike
Add to saved papers

Immune transcriptome reveals the mincle C-type lectin receptor acts as a partial replacement for TLR4 in lipopolysaccharide-mediated inflammatory response in barramundi (Lates calcarifer).

Fish represent the most diverse and abundant extant vertebrate infraclass. They are also one of the earliest divergent phyla with adaptive immunity based on antigen recognition by MHC and immunoglobulin. The aquaculture industry, which currently provides more than half of the fish for human consumption globally, has successfully exploited the adaptive immune system of fish through mass vaccination programs. However, vaccination against highly diverse antigens, mostly carbohydrates, such as capsular polysaccharides and lipopolysaccharide (LPS) is challenging. Fish have a subdued innate response to LPS, but adaptive response is generally high and type-specific. To better understand the link between initial innate response and early onset of adaptive immunity to carbohydrate antigens in the perciform barramundi (Lates calcarifer), an immune transcriptome was prepared from pronephros and spleen following vaccination with LPS and peptidoglycan. From 163,661 transcripts derived by Illumina mRNA-Seq, most grouped in neuronal, endocrine or immune system categories, suggesting a close relationship between the three systems. Moreover, digestive enzyme transcripts in spleen appeared to be highly inducible in barramundi. Most of the known TLRs were transcribed in the barramundi spleen and HK transcriptome, with the notable exception of TLR4, which is primarily responsible for LPS recognition in mammals. Several C-type lectin receptors were also identified, including CD209, CD205, and CLEC4E (Mincle). As Mincle has been shown to bind LPS and is abundant on dendritic cells, its role in response to LPS in barramundi was further investigated. A high dose of LPS induced TNF-alpha expression via Mincle. However, IL-6 regulation, whilst still regulated in response to LPS, did not depend upon the Mincle pathway, suggesting other routes of activation. This study thus suggests that Mincle acts as a partial substitute for TLR4 in barramundi in the processing of LPS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app