Add like
Add dislike
Add to saved papers

Conjugated Polyelectrolyte Based Sensitive Detection and Removal of Antibiotics Tetracycline from Water.

A new conjugated polyelectrolyte poly[5,5'-(((2-phenyl-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(oxy))diisophthalate] sodium (PFPT) was synthesized via the palladium-catalyzed Suzuki cross-coupling polymerization method and successfully applied for the rapid, real time, and highly sensitive detection of antibiotics tetracycline (Tc) in 100% aqueous media via photoinduced electron transfer with detection limit in the ppb level. Remarkably, PFPT could also be applied for the trace analysis of Tc in serum samples having recoveries well in the range 92-97% with relative standard deviations (RSD) of 1.01-1.14%, confirming reliability of the present method for the analysis of Tc. Additionally, PFPT was blended with the abundant natural polysaccharide chitosan to form CS-PFPT composite films and developed as a biopolymer based membrane for the removal of Tc from water samples with a good adsorption capacity of 3.12 mg g-1 , thus finding vital application in the treatment of antibiotic infested wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app