Add like
Add dislike
Add to saved papers

Superior Performance of Artificial Nacre Based on Graphene Oxide Nanosheets.

Natural nacre is well-known by its unique properties due to the well-recognized "bricks-and-mortar" structure. Inspired by the natural nacre, graphene oxide (GO) was reduced by dopamine with simultaneous coating by polydopamine (PDA) in aqueous solution to yield polydopamine-capped reduce GO (PDG). The artificial nacre nanocomposite materials of poly(vinyl alcohol) (PVA) and PDG presenting layered structure had been successfully constructed via a vacuum-assisted assembly process, in which PDG and PVA served as "bricks" and "mortar", respectively. A combination of hydrogen bonding, strong adhesion and friction between PDG nanosheets and PVA chains resulted in enhancements for mechanical properties. The tensile strength, elongation at break, and toughness of PDG-PVA nanocomposite reached to 327 ± 19.3 MPa, 8 ± 0.2%, and 13.0 ± 0.7 MJ m-3 , which is simultaneously 2.4, 8, and 7 times higher than that of nature nacre with 80-135 MPa, ∼1%, and ∼1.8 MJ m-3 , respectively. More interestingly, the obtained nanocomposites demonstrated a high anisotropy of thermal conductivity (k∥ /k⊥ ≈ 380). Combined with superior mechanical properties and high anisotropy of thermal conductivity make these biomimetic materials promising candidates in aerospace, tissue engineering, and thermal management applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app