JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Thermal engineering of FAPbI 3 perovskite material via radiative thermal annealing and in situ XRD.

Nature Communications 2017 January 18
Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI3 ) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI3 annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI3 into PbI2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app