JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

A bioinspired adaptive spider web.

This work presents an adaptive structure inspired by spider webs' behavior. To investigate the dynamic properties and performance of this system, numerical models are developed to examine the effects of pretension in radial strings, and Young's modulus, and damping ratio on the natural frequency and total energy of the system. An experimental study was conducted to validate theoretical results. Stepper motors controlled by a microcontroller are utilized to increase the pretension in the radial strings of the web in order to tune the web's energy absorption ability. It is demonstrated that the pretension, Young's modulus, and damping ratio in the radial strings can significantly affect the natural frequency and total energy of full and damaged webs. It is also shown that increasing the pretension in the radial strings compensates for the loss of stiffness due to the damaged strings. Finally, it is shown that controlling the pretension in radial strings can provide higher energy absorption capability for the spider web.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app