Add like
Add dislike
Add to saved papers

Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD.

DNA methylation has been acknowledged as one of the key epigenetic mechanisms involved in the regulation of gene expression and genomic functions. Alteration of the DNA methylation level has been linked to modification of the disease progression and instability regulation of certain disease-causing repeats in neurodegenerative diseases. In this study, blood samples collected from spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) patients versus control were used to explore the potential link of DNA methylation levels at ATXN3 gene promoter to the pathogenesis of SCA3/MJD. We found that the methylation levels in the ATXN3 promoter were significantly higher in SCA3/MJD patients relative to the controls. Furthermore, higher methylation levels were detected in the SCA3/MJD patients with earlier age at onset and the families with an intergenerational CAG repeats instability. In addition, the first CpG island of the ATXN3 promoter served as the main regulation region of DNA methylation. These findings suggested that an epigenetic change may contribute to the pathogenesis of the SCA3/MJD and provide potential therapeutic targets for CAG repeats-based diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app