Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs.

Roux-en-Y gastric bypass (RYGB) surgery is widely used in the management of morbid obesity. RYGB improves metabolism independently of weight loss by still unknown mechanisms. Bile acids (BAs) are good candidates to explain this benefit, since they regulate metabolic homeostasis and their systemic concentrations increase upon RYGB. Here we analyzed the mechanisms underlying the increase in systemic BA concentrations after RYGB and the role of the liver therein. To this aim, we used the Göttingen-like minipig, a human-size mammalian model, which allows continuous sampling and simultaneous analysis of pre-hepatic portal and systemic venous blood. BA concentrations and pool composition were measured in portal blood, containing intestinal reabsorbed BAs and compared to systemic blood during a standardized meal test before and after RYGB. Systemic total BA concentrations increased after RYGB, due to an increase in conjugated BAs. Interestingly, the ratio of portal:systemic conjugated BAs decreased after RYGB, indicating a role for the liver in systemic BA concentrations changes. In line, hepatic expression of BA transporter genes decreased after RYGB. Our results show that the increase in systemic BAs after surgery is due to decreased selective hepatic recapture. Thus, alterations in hepatic function contribute to the increase in systemic BAs after RYGB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app