Add like
Add dislike
Add to saved papers

Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD.

Women are at increased risk of developing post-traumatic stress disorder (PTSD) following a traumatic event. Recent studies suggest that this may be mediated, in part, by circulating estrogen levels. This study evaluated the hypothesis that individual variation in response to estrogen levels contributes to fear regulation and PTSD risk in women. We evaluated DNA methylation from blood of female participants in the Grady Trauma Project and found that serum estradiol levels associates with DNA methylation across the genome. For genes expressed in blood, we examined the association between each CpG site and PTSD diagnosis using linear models that adjusted for cell proportions and age. After multiple test correction, PTSD associated with methylation of CpG sites in the HDAC4 gene, which encodes histone deacetylase 4, and is involved in long-term memory formation and behavior. DNA methylation of HDAC4 CpG sites were tagged by a nearby single-nucleotide polymorphism (rs7570903), which also associated with HDAC4 expression, fear-potentiated startle and resting-state functional connectivity of the amygdala in traumatized humans. Using auditory Pavlovian fear conditioning in a rodent model, we examined the regulation of Hdac4 in the amygdala of ovariectomized (OVX) female mice. Hdac4 messenger RNA levels were higher in the amygdala 2 h after tone-shock presentations, compared with OVX-homecage control females. In naturally cycling females, tone-shock presentations increased Hdac4 expression relative to homecage controls for metestrous (low estrogen) but not the proestrous (high estrogen) group. Together, these results support an estrogenic influence of HDAC4 regulation and expression that may contribute to PTSD in women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app