Add like
Add dislike
Add to saved papers

In vivo pharmacokinetic studies and intracellular delivery of methotrexate by means of glycine-tethered PLGA-based polymeric micelles.

Methotrexate (MTX) is a widely used drug for the management of various kinds of cancers. However, numerous challenges are associated with MTX like poor aqueous solubility, dose-dependent side effects and poor-bioavailability. With an aim to explore the potential benefits in drug delivery of MTX, it was intended to fabricate glycine-PLGA-based polymeric micelles. Glycine was chemically linked to PLGA and the linkage was confirmed by FT-IR, and NMR-Spectroscopy. The developed polymeric micelles offered substantial loading to MTX with a pH-dependent drug release profile. The drug was released maximally at the cancer cell pH vis-à-vis blood plasma pH. The cytotoxicity of drug against MDA-MB-231 cell lines was enhanced by approx. 100% and the confocal laser scanning microscopy confirmed the localization of dye-tagged nanocarriers in the interiors of cancer cells. The bioavailable fraction of the drug was increased by approx. 4-folds, whereas elimination half-life was enhanced by around two-folds in Wistar rats. The novel approach offers a biodegradable and promising carrier for the better delivery of anticancer agents with immense promises of efficacy enhancement, improved delivery and better pharmacokinetic profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app