Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense.

BACKGROUND: The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions.

METHODS: We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure.

RESULTS: When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry.

CONCLUSIONS: Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase.

GENERAL SIGNIFICANCE: The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app