Add like
Add dislike
Add to saved papers

Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.

I-III-VI2 group "green" quantum dots (QDs) are attracting increasing attention in photoelectronic conversion applications. Herein, on the basis of the "simultaneous nucleation and growth" approach, Cu-In-Ga-Se (CIGSe) QDs with light harvesting range of about 1000 nm were synthesized and used as sensitizer to construct quantum dot sensitized solar cells (QDSCs). Inductively coupled plasma atomic emission spectrometry (ICP-AES), wild-angle X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses demonstrate that the Ga element was alloyed in the Cu-In-Se (CISe) host. Ultraviolet photoelectron spectroscopy (UPS) and femtosecond (fs) resolution transient absorption (TA) measurement results indicate that the alloying strategy could optimize the electronic structure in the obtained CIGSe QD material, thus matching well with TiO2 substrate and favoring the photogenerated electron extraction. Open circuit voltage decay (OCVD) and impedance spectroscopy (IS) tests indicate that the intrinsic recombination in CIGSe QDSCs was well suppressed relative to that in CISe QDSCs. As a result, CIGSe based QDSCs with use of titanium mesh supported mesoporous carbon counter electrode exhibited a champion efficiency of 11.49% (Jsc = 25.01 mA/cm2 , Voc = 0.740 V, FF = 0.621) under the irradiation of full one sun in comparison with 9.46% for CISe QDSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app