Add like
Add dislike
Add to saved papers

Effects of the central potassium ions on the G-quadruplex and stabilizer binding.

Human telomeres undertake the structure of intra-molecular parallel G-quadruplex in the presence of K+ in eukaryotic cell. Stabilization of the telomere G-quadruplex represents a potential strategy to prevent telomere lengthening by telomerase in cancer therapy. Current work demonstrates that the binding of central K+ with the parallel G-quadruplex is a coordinated water directed step-wise process. The K+ above the top G-tetrad is prone to leak into environment and the 5'-adenine quickly flips over the top G-tetrad, leading to the bottom gate of G-tetrads as the only viable pathway of K+ binding. Present molecular dynamics studies on the two most potent stabilizers RHPS4 and BRACO-19 reveal that the central K+ has little influence on the binding conformations of the bound stabilizers. But without the central K+ , either RHPS4 or BRACO-19 cannot stabilize the structure of G-quadruplex. The binding strength of stabilizers evaluated by the MM-PBSA method follows the order of BRACO-19> RHPS4, which agrees with the experimental results. The difference in binding affinities between RHPS4 and BRACO-19 is probably related to the ability to form intramolecular hydrogen bonds and favorable van del Waals interactions with G-quadruplex. In the models that have one central K+ located at the upper/lower binding site, the corresponding top/bottom stacked stabilizers show more favorable binding affinities, indicating the apparent promoting effect of central K+ on the stabilizer binding. Our findings provide further insights into the regulatory effect of K+ on the G-quadruplex targeted binding, which is meaningful to the development of G-quadruplex stabilizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app