Add like
Add dislike
Add to saved papers

Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress.

Chemosphere 2017 April
Phthalate acid esters (PAEs) are vital environmental hormone-like chemicals that are noxious to plants, animals, and human beings. In this study, the influences of di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) on the seed germination, root morphology, and various physiological changes of wheat seedlings were investigated by analyzing superoxide anion (O2(-)) accumulation, antioxidant enzyme activity, and lipid peroxidation. DBP and DEHP were found to obviously inhibit germination only at high concentrations, but significantly affected root morphology even at lower concentrations. Their toxic effects were the most severe on root elongation, followed by shoot elongation, and were the least severe on germination rate, indicating that root elongation was the best index for evaluating DBP and DEHP eco-toxicity. DBP and DEHP also enhanced O2(-) and malondialdehyde levels and membrane permeability, as well as produced changes in the antioxidant status and PAE content in the stem and leaf (combined tissues, hereafter shoot) and root tissues. The activities of superoxide dismutase, catalase, and peroxidase increased at low and medium DBP and DEHP concentrations, but declined at high PAE concentrations. These results indicated that PAEs could exert oxidative damage in the early development stage of wheat, particularly at higher concentrations. DBP and DEHP accumulation was higher in the roots than in the shoot tissues, and their levels in these tissues increased with increasing PAE concentrations, supporting their more-serious toxic effects on roots than those on shoots. Further, the physicochemical properties of DBP rendered it more harmful than DEHP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app