JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PSPEL: In Silico Prediction of Self-Interacting Proteins from Amino Acids Sequences Using Ensemble Learning.

Self interacting proteins (SIPs) play an important role in various aspects of the structural and functional organization of the cell. Detecting SIPs is one of the most important issues in current molecular biology. Although a large number of SIPs data has been generated by experimental methods, wet laboratory approaches are both time-consuming and costly. In addition, they yield high false negative and positive rates. Thus, there is a great need for in silico methods to predict SIPs accurately and efficiently. In this study, a new sequence-based method is proposed to predict SIPs. The evolutionary information contained in Position-Specific Scoring Matrix (PSSM) is extracted from of protein with known sequence. Then, features are fed to an ensemble classifier to distinguish the self-interacting and non-self-interacting proteins. When performed on Saccharomyces cerevisiae and Human SIPs data sets, the proposed method can achieve high accuracies of 86.86 and 91.30 percent, respectively. Our method also shows a good performance when compared with the SVM classifier and previous methods. Consequently, the proposed method can be considered to be a novel promising tool to predict SIPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app