Add like
Add dislike
Add to saved papers

Learning to Hash With Optimized Anchor Embedding for Scalable Retrieval.

Sparse representation and image hashing are powerful tools for data representation and image retrieval respectively. The combinations of these two tools for scalable image retrieval, i.e., sparse hashing (SH) methods, have been proposed in recent years and the preliminary results are promising. The core of those methods is a scheme that can efficiently embed the (high-dimensional) image features into a low-dimensional Hamming space, while preserving the similarity between features. Existing SH methods mostly focus on finding better sparse representations of images in the hash space. We argue that the anchor set utilized in sparse representation is also crucial, which was unfortunately underestimated by the prior art. To this end, we propose a novel SH method that optimizes the integration of the anchors, such that the features can be better embedded and binarized, termed as Sparse Hashing with Optimized Anchor Embedding. The central idea is to push the anchors far from the axis while preserving their relative positions so as to generate similar hashcodes for neighboring features. We formulate this idea as an orthogonality constrained maximization problem and an efficient and novel optimization framework is systematically exploited. Extensive experiments on five benchmark image data sets demonstrate that our method outperforms several state-of-the-art related methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app