Add like
Add dislike
Add to saved papers

Capacity Evaluation of a Quantum-Based Channel in a Biological Context.

Nanotechnology, as enabler of the miniaturization of devices in a scale ranging from 1 to few hundreds of nm , represents a viable solution for " alternative" communication paradigms that could be effective in complex networked systems, as body area networks. Traditional communication paradigms are not effective in the context of joint body and nano-networked systems, for several reasons, and then novel approaches have been investigated such as nanomechanical, electromagnetic, acoustic, molecular, etc. On the other hand, quantum phenomena represent a natural direction for developing nanotechnology, since it has to be considered as a new scale where new phenomena can occur and can be exploited for information purpose. Specific quantum particles are phonons, the quanta of mechanical vibrations (i.e., acoustic excitations), that can be analyzed as potential information carriers in a body networked context. In this paper we will focus on the generation of phonons from photon-phonon interaction, by irradiating a sample of human tissue with an electro-magnetic field, and then we will theoretically derive the information capacity and the bit rate in the frequency range [103 - 1012 ] Hz.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app