Add like
Add dislike
Add to saved papers

Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats.

At present, the mechanisms by which general anesthetics causing loss of consciousness remain unclear. The central medial thalamic nucleus (CMT) is a rarely studied component of the midline thalamic complex, which is deemed to be a part of the nonspecific arousal system. Although the CMT participates in modulating arousal and receives excitatory noradrenergic projections from locus coeruleus, it remains unknown whether the noradrenergic pathway in the CMT takes part in modulating the arousal system. Therefore, we hypothesized that noradrenergic transmission in the CMT is involved in modulating induction and emergence of propofol anesthesia. First, we infused norepinephrine (NE) into the CMT to observe the role of CMT noradrenergic pathway in modulating the anesthetic state induced by propofol. The results showed that microinjection of NE into the CMT accelerated emergence from propofol anesthesia, but had no impact on the induction of or sensitivity to propofol anesthesia in rats. In addition, infusion of NE into the CMT caused electroencephalography changes in the prefrontal cortex and the anterior cingulate cortex. Finally, we used a whole-cell patch clamp to examine the effects of NE on neuronal excitability and GABAergic transmission in the CMT. In the CMT slices, propofol suppressed neuronal excitability and enhanced GABAergic transmission, while application of NE partly reversed these effects. These findings support the hypothesis that the CMT noradrenergic pathway plays an important role in modulating the emergence from general anesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app