Add like
Add dislike
Add to saved papers

Chemically modified surface functional groups of Alcaligenes sp. S-XJ-1 to enhance its demulsifying capability.

Cell-surface functional groups (amino, carboxyl, hydroxyl, as well as phosphate) were chemically modified in various ways to enhance the demulsification capability of the demulsifying bacteria Alcaligenes sp. S-XJ-1. Results demonstrated that the demulsifying activity was significantly inhibited by amino enrichment with cetyl trimethyl ammonium bromide, amino methylation, hydroxyl acetylation, and phosphate esterification, but was gradually promoted by carboxyl blocking with increasing the extents of esterification. Compared with the raw biomass, an optimal esterification of carboxyl moieties enhanced the demulsification ratio by 26.5% and shortened the emulsion half-life from 24 to 8.8 h. The demulsification boost was found to be dominated by strengthened hydrophobicity (from 53° to 74°) and weakened electronegativity (from -34.6 to -4.3 mV at pH 7.0) of the cell surface, allowing the rapid dispersion and adsorption of cells onto the oil-water interface. The chemical modification of the functional groups on the biomass surface is a promising tool for the creation of a high-performance bacterial demulsifier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app