Add like
Add dislike
Add to saved papers

Investigation of a new bis(carboxylate)triazole-based anchoring ligand for dye solar cell chromophore complexes.

A novel anchoring ligand for dye-sensitised solar cell chromophoric complexes, 1-(2,2'-bipyrid-4-yl)-1,2,3-triazole-4,5-dicarboxylic acid (dctzbpy), is described. The new dye complexes [Ru(bpy)2 (dctzbpy)][PF6 ]2 (AS16), [Ir(ppy)2 (dctzbpy)][PF6 ] (AS17) and [Re(dctzbpy)(CO)3 Cl] (AS18) were prepared in a two stage procedure with intermediate isolation of their diester analogues, AS16-Et2, AS17-Et2 and AS18-Et2 respectively. Electrochemical analysis of AS16-Et2, AS17-Et2 and AS18-Et2 reveal reduction potentials in the range -1.50 to -1.59 V (vs. Fc+ /Fc) which are cathodically shifted with respect to that of the model complex [Ru(bpy)2 (dcbH2 )]2+ (1) (Ered = -1.34 V, dcbH2 = 2,2'-bipyridyl-4,4'-dicarboxylic acid). This therefore demonstrates that the LUMO of the complex is correctly positioned for favourable electron transfer into the TiO2 conduction band upon photoexcitation. The higher energy LUMOs for AS16 to AS18 and a larger HOMO-LUMO gap result in blue-shifted absorption spectra and hence reduced light harvesting efficiency relative to their dcbH2 analogues. Preliminary tests on TiO2 n-type and NiO p-type DSSCs have been carried out. In the cases of the Ir(iii) and Re(i) based dyes AS17 and AS18 these show inferior performance to their dcbH2 analogues. However, the Ru(ii) dye AS16 (η = 0.61%) exhibits significantly greater efficiency than 1 (η = 0.1%). In a p-type cell AS16 shows the highest photovoltaic efficiency (η = 0.028%), almost three times that of cells incorporating the benchmark dye coumarin C343.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app