Add like
Add dislike
Add to saved papers

Mapping the sequence-structure relationships of simple cyclic hexapeptides.

Cyclic peptides are promising protein-protein interaction modulators with high binding affinities and specificities, as well as enhanced stabilities and oral availabilities over linear analogs. Despite their relatively small size and cyclic architecture, it is currently difficult to predict the favored conformation(s) of most classes of cyclic peptides. An improved understanding of the sequence-structure relationships for cyclic peptides will offer an avenue for the rational design of cyclic peptides as possible therapeutics. In this work, we systematically explored the sequence-structure relationships for two cyclic hexapeptide systems using molecular dynamics simulation techniques. Starting with an all-glycine cyclic hexapeptide, cyclo-G6 , we systematically replaced glycine residues with alanines and characterized the structural ensembles of different variants. The same process was repeated with valines to investigate the effects of larger side chains. An analysis of the origin of structure preferences was performed using thermodynamics decomposition and several general observations are reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app